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Abstract

Recent advances in reasoning models have shown remark-
able progress in text-based domains, but transferring those
capabilities to multimodal settings, and allowing reasoning
e.g. over audio-visual data, still remains a challenge, i.a.
because of the limited availability of high-quality reason-
ing data in targeted multimodal combinations. To address
this problem we introduce AVRT, a novel framework that
generates high-quality audio-visual reasoning traces from
single-modality teacher models. We generate independent
vision- and an audio-reasoning traces via models special-
ized to reason over their respective modalities and merge
the resulting traces with an LLM merger model. The result-
ing multimodal traces are used in a supervised fine-tuning
(SFT) cold start to adapt the target model to audio-visual
reasoning traces first, before training it in a second reinforce-
ment learning stage on larger-scale data. Our evaluation
shows that the proposed pipeline based on generated mul-
timodal traces for SFT allows models to achieve superior
performance on various datasets, i.a. OmniBench, Daily-
Omni, and MMAR, comapred to RL alone, establishing a
new pipeline for training of audio-visual reasoning models in
particular and opening new ways to train reasoning models
on multimodal data in general. '

1. Introduction

Humans perceive the world by combining information from
multiple modalities through diverse sensory inputs. With
the wide availability of multimodal data, such as videos,
multimodal understanding in general and audio-visual un-
derstanding in particular has drawn more and more interest
from the research community. Recent advancements in this
area, also in combination with large language models, have
shown remarkable performance in audio-visual understand-
ing [1, 4, 14, 18, 27].

In parallel, the emergence of reasoning-capable language
models has led to new capabilities with respect to the analysis
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and understanding of a given scenario, exemplified by Ope-
nAD’s o-series [10] and DeepSeek-R1 [5]. These advances
have been significantly driven by reinforcement learning
techniques [19]. These reasoning capabilities have been suc-
cessfully extended to inputs beyond text, such as vision-text
models [6, 9] and audio-text models [8, 23, 25], demon-
strating chain-of-thought capabilities within the respective
modalities. However, audio-visual reasoning has not yet
reached the same level of advancement as its single-modality
counterparts, i.a. due to the challenge of integrating informa-
tion and reasoning cues across different modalities at scale
as well as due to the practical lack of audio-visual reasoning
data in general. Existing approaches try to address this prob-
lem e.g. by generating reference reasoning chains from large
foundation teacher models that were trained with all target
modalities [7] or try to approach the problem by extend-
ing reinforcement learning formulations e.g. by improved
credits assignment or by context summarization [11, 29].

This paper proposes a pipeline for Audio-Visual Rea-
soning Transfer (AVRT) based on single-modality teachers.
To this end, AVRT extracts detailed chains of thought inde-
pendently from specialized visual and audio teachers, then
merges them with a text-only aggregator into a single cross-
modal reasoning traces, as shown in Fig. 1. Namely, we
combine traces from specialized single-modality reasoning
models via a text-only LLM merger model to generate a
coherent multimodal reasoning that explicitly correlates in-
formation across audio and visual channels. By using an
LLM as a merging interface for different the teacher models,
every model can be prompted in the format that it was trained
for, leading to high-quality modality-specific outputs. The
following LLM merger then allows to aggregate the infor-
mation, including different meta tags, and convert it into a
consistent target format. The resulting audio-visual traces
are then in the first step used to fine-tune a student audio-
visual LLM in a cold-start manner via supervised fine-tuning
(SFT) to learn the reasoning formatting and patterns, as well
as to integrate multimodal reasoning into the student model.
In a second step, the student model is trained following the
GRPO [19] objective.

We evaluate the proposed approach on four challenging
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Figure 1. Top: Overview of the AVRT pipeline: We first generate reasoning chains from single-modality teacher models that are prompted
in the format they were optimized for and, second, leverage an LLM merger as an interface between the teacher models and the resulting
reasoning chain to aggregate the information and put it into the target format. The resulting audio-visual traces are then used to train a
student model in a cold-start manner via supervised fine-tuning (SFT) followed by GRPO fine-tuning for audio-visual question-answering.

datasets: First, a zero-shot vision-audio downstream datasets,
we consider OmniBench [13] and DailyOmni [32], second,
we evaluate on AVQA [28] as in-domain validation dataset,
and finally on MMAR [17] as audio-only downstream task.
Using only a 3B-parameter student, we achieve improved
performance compared to other 3B audio-visual reasoning
models and competitive performance to 7B models. Our ab-
lation shows that the combination of reasoning traces of two
different teacher models by a language-only merger model
improves audio-visual reasoning in the GRPO learning stage.

Our contribution can be summarized as follows: 1)
We propose a novel method to aggregate multiple single-
modality reasoning traces into integrated multi-modal rea-
soning traces, creating high-quality audio-visual reasoning
data without expensive annotation. 2) We are the first to train
a multimodal reasoner based on this type of composed rea-
soning data, demonstrating that cross-modal understanding
can emerge from the combination of single-modality exper-
tise. 3) We conduct an extensive evaluation on audio-visual
benchmarks, achieving state-of-the-art results that compete
with larger models through our approach.

2. Related Work

Audio-Visual Large Language Models. Audio-visual large
language models have made constant progress in address-
ing challenging tasks in multimodal understanding. Early
works like Meerkat [2] focus on fine-grained spatial and
temporal grounding on five audio-visual tasks, introduc-
ing optimal transport-based modality alignment and cross-
attention modules for audio-visual consistency. AVicuna
[20] proposes specifically targeting temporal referential di-
alogue in untrimmed videos, introducing the Audio-Visual
Tokens Interleaver for temporal alignment. VideoLLaMA
2 [1] advances spatial-temporal modeling through special-
ized Spatial-Temporal Convolution connectors and enhanced

audio understanding via joint training, achieving state-of-
the-art performance among open-source models. Rather than
developing new models from scratch, PAVE [15] introduces
a lightweight adaptation framework that extends existing
video LLMs to other modalities through efficient “patches”
that add only 0.1% additional parameters. More recent work
moves toward comprehensive omni-modal capabilities, with
Qwen2.5-Omni [27] enabling end-to-end streaming multi-
modal inputs and outputs through innovations like TMRoPE
for synchronizing video with audio and the Thinker-Talker
architecture for concurrent text and speech generation. Ola
[14] proposes progressive modality alignment training strate-
gies that use video as a central bridge to connect modal-
ities. Despite these advances, these existing approaches
often struggle to effectively associate information across
both modalities, lacking structured reasoning processes that
can explicitly capture and use cross-modal dependencies and
correlations for comprehensive multimodal understanding.

Audio-Visual Reasoning. Audio-visual reasoning with
large language models has seen rapid advancements. Daily-
Omni [32] introduces a dedicated Audio-Visual QA dataset,
accompanied by Daily-Omni-Agent, a training-free agent
that utilizes an open-source visual language model (VLM),
an audio language model (ALM) and an automatic speech
recognition (ASR) model to establish a baseline for this
benchmark. Recent work has increasingly leveraged rein-
forcement learning: Echolnk-R1 [26] proposes a framework
using GRPO for structured cross-modal reasoning, demon-
strating emergent self-corrective reasoning behaviors. Hu-
manOmniV?2 [29] addresses shortcut problems by requiring
explicit context summarization before reasoning, introduc-
ing context and logical rewards alongside IntentBench for
understanding human intentions. Omni-R1 [31] tackles the
trade-off between temporal coverage and spatial resolution
through a two-system architecture with hierarchical rewards.
AVATAR [11] presents an off-policy RL framework with



Dataset Modalities Answer Format # QA pairs (K)
AVQA A+V Video + question + 4-way answer 57.3
Omnilnstruct-v1 A+l Image + question + 4-way answer 96.1
MUSIC-AVQA A+V Video + question + 4-way answer (focused on music) 459
AVQA -R1-6K A+l Video + question + 4-way answer (subset of Omnilnstruct) 6.4
AVRT-20K (ours) ALV Video + question + 4-way answer + Reasoning chains 192

incorporating audio and visual data

Table 1. Comparison of audio-visual question answering datasets. AVRT-20K (derived from AVQA) provides reasoning traces that
explicitly integrate audio (A) and visual (V) modalities, addressing a key limitation in existing AVQA datasets which focus solely on
question-answer pairs without intermediate reasoning steps. All datasets use multiple-choice questions with 4 options (MCQ-4). The number

of QA pairs is reported in thousands (K).

Temporal Advantage Shaping (TAS) for improved credit
assignment during planning and synthesis stages. More
recently, AURELIA [3] introduces a test-time reasoning dis-
tillation approach that uses three different forward passes to
generate step-by-step reasoning, which is then provided as in-
put alongside the audio-visual data and question to guide the
model’s reasoning process. Rather than relying on test-time
adaptation strategies that require multiple inference passes,
we present a more efficient paradigm, we use single-modality
specialist models as teachers to enhance a multimodal stu-
dent model through knowledge distillation, constructing a
dataset with explicit audio-visual reasoning chains. This
allows a for supervised fine-tuning (SFT) approach, supple-
mented by RL, to produce a model that generates answers in
a single forward pass, significantly reducing inference cost
compared to multi-pass test-time strategies.

Audio-Visual Datasets. AVQA [28] can be considered
one of the foundational audio-visual QA datsets with 57, 335
question-answer pairs from daily audio-visual activities re-
quiring clues from both modalities. Omnilnstruct [13] devel-
ops a comprehensive tri-modal reasoning dataset combining
visual, audio, and textual resources, while MUSIC-AVQA
[12] expands to musical performance with 45, 867 question-
answer pairs across 9, 288 videos. AVQA-R1-6K [26] pro-
vided a manually curated subset of Omnilnstruct focusing
on questions that are more likely to require audio-visual
reasoning. While these datasets have advanced the field
significantly, they primarily focus on question-answer pairs
without providing explicit reasoning traces that demonstrate
how models should integrate cross-modal information. Our
AVRT approach directly addresses this gap through struc-
tured reasoning chain generation, as compared in Table 1.

3. Methodology

In this paper, we derive audio-visual reasoning traces based
on existing audio-visual question-answering pairs as e.g.
provided by AVQA [28]. In this section, we first discuss
the generation of audio-visual reasoning traces in Sec. 3.1
and our training procedure to leverage this data to perform
audio-visual question answering in Sec. 3.2.

3.1. Cross-Modal Reasoning Trace Generation

Our data generation process consists of two main stages: a
single-modality reasoning extraction step and a cross-modal
aggregation step. Let an audio-visual question-answering
data sample be denoted as (X, @), where X is a video and @
is a question. The video X comprises both an audio stream
A and a visual stream V, such that X = (A, V).
Single-Modality Reasoning Extraction. In the first stage,
we generate modality-specific reasoning. We select spe-
cialized teacher models for the audio (7'4) and visual (Ty)
modalities. For a given sample (X, @), we provide each
teacher with the question and its corresponding modality.
We use carefully crafted prompts, P4 and Py, to elicit de-
tailed reasoning traces. The audio reasoning trace is gener-
ated as Ry = T4(Q, A, P4), and the visual reasoning trace
is Ry = Ty (Q,V, Py). These traces capture the unique
characteristics and patterns of each modality.

Cross-Modal Aggregation. In the second stage, we perform
cross-modal aggregation. We use a text-only large language
model, M, , to merge the reasoning outputs. This model
takes the reasoning traces from both modalities and the orig-
inal question to produce a unified, cross-modal reasoning
output: Rogq = Mygq(Q, Ra, Rv). This aggregation step
transforms the diverse reasoning formats into a uniform
structure, correlating characteristics from both modalities
and incorporating cross-modal dependencies.

Filtering. To make sure that we only use correct reasoning
traces and do not introduce any noise during the SFT, we
consider only reasoning traces where both modality-specific
teachers generate correct responses. This filtering strategy
ensures high-quality training data by avoiding the propaga-
tion of erroneous reasoning patterns that could introduce
noise during cross-modal aggregation [22, 24]. As a result,
we only keep a 20K subset of the original 40K AVQA data
samples.

3.2. Training

Stage 1: Supervised Fine-Tuning. We fine-tune the base
model on the merged audio-visual reasoning traces using
an autoregressive language loss. Given a training sample



(X,Q, Ragg) where X = (A, V) is the video with audio and
visual streams, () is the question, and R, is the aggregated
reasoning trace, we optimize the cross-entropy loss:

‘Rag.ql
Lspr == logpy(ri|X,Q, 7<), €]
=1

where 7, represents the ¢-th token in the reasoning
trace Rq44 and 0 are the model parameters. The model
learns to generate structured reasoning following the
format established during cross-modal aggregation:
<think>...</think><answer>...</answer>,
where the thinking section contains the multimodal
reasoning and the answer section provides the final response.
Stage 2: Reinforcement Learning. In a second step, we
employ Group Relative Policy Optimization (GRPO)[19].
GRPO eliminates the need for explicit value function estima-
tion by deriving advantage estimates through group-based
comparisons of model outputs.

The GRPO training operates by sampling G distinct re-
sponses {01, 02, . ..,0q } for each input question ¢ using the
current policy mg,,,. Each response o; receives a scalar re-
ward r; from our reward function. The advantage for o; is
computed by normalizing rewards within the group:

p r; — mean(r)

Ait:?’i:W; (2)

)

where this advantage 7; is applied uniformly across all tokens
t in response o;.

Our reward combines multiple components to enforce
correctness, formatting, and reasoning quality.

T, = Rformat (01) + Racc(oi) + Rlength(oi) (3)

The three components are defined as:

(1) Format Reward (Rjformqt): A binary reward that
verifies adherence to the our proposed reasoning format
(<think>...</think><answer>...</answer>):

1, if format is correct

Rformat (Oi) - { (4)

0, otherwise

(2) Final Answer Accuracy (R,..): A simple string match-
ing evaluation that compares the model’s predicted answer
choice against the ground truth label:

1, if answer is correct, )

0, otherwise.

Racc(oi) = {

(3) Reasoning Length Reward (R;..4:1): A dense re-
ward that encourages optimal reasoning trace length using a

Table 2. Statistics of the AVRT dataset showing sample counts,
quality metrics, and distribution of question types and answer op-
tions across training and validation splits.

Train / Val

18,279 /945

100.0% / 100.0%

165.5 +33.9 / 163.4 £ 32.5
1.0£0.0/1.0+0.0

10.0 £0.1 / 10.0+£ 0.2
1280720 (62% / 43%)

Metric

Total Samples

Reasoning Format Compliance
Thinking Section Length (tokens)
Answer Section Length (tokens)
Video and Audio Duration (sec)
Primary Resolution

Question Type Distribution

Question Type Train/ Val (%) Question Type Train/ Val (%)

Which 452 /4577 Where 8.07/9.7
Come From 30.9 / 29.8 Why 02704
Happening 15.5 / 14.1  Others 02703
Gaussian-shaped distribution. The reward is:
2
. (wi — p)
Riength (0;) = min (1.0, exp ( - 72)
20
+ H(wmin S w; S wmax) : b)
(6)

where w; is word count, p is the optimal target, o is the
width, and b is a bonus in [Win, Wimaz]-

We optimize our reward function using Group Relative
Policy Optimization (GRPO) [19], which computes advan-
tage estimates through group-based comparisons of model
outputs and applies policy gradient optimization with clip-
ping and KL regularization.

4. Experiments

4.1. Training Datasets

AVRT-20K for Supervised fine-tuning. In the first phase of
the training, we fine-tune the respective student model in a
fully supervised way on pre-constructed audio-visual reason-
ing traces. To this end, we introduce the AVRT-20K dataset,
which is constructed using our proposed AVRT method on
a subset of the AVQA dataset. We use Kimi-VL-Thinking
[21] and Audio Flamingo 3 (think) [8] as the single-modality
teachers Ty, and T'4. These models were chosen due to their
balance between achieving state-of-the-art results in their
modalities, and generating descriptive reasoning traces. We
use 10-second audio input and 8 uniformly-sampled video
frames from each sample as the input for the audio and vi-
sual teacher, respectively. The full prompt templates used
for each model can be found in the supplementary material.
Table 2 presents statistics for our AVRT-20K dataset. The
final collection comprises 18, 279 training samples and 945
validation samples, all extracted from the original AVQA
dataset. All samples achieve 100% reasoning format com-



pliance, ensuring consistent structure across the dataset. The
thinking sections contain an average of 165.5 £ 33.9 tokens
in the training set and 163.4 = 32.5 tokens in the validation
set, while answer sections are consistently single tokens,
corresponding to the (A, B, C, D) options format. Videos
maintain uniform duration of ~10 seconds, with the main
resolution being 1280x720.

The distribution of question types closely mirrors that

of the original AVQA dataset, with "Which” questions be-
ing most prevalent (45.2% in training), followed by ”Come
From” (30.9%), "Happening” (15.5%), and "Where” (8.0%)
questions. This similarity demonstrates that our random
sampling successfully encompasses the distributional char-
acteristics of the original dataset, ensuring our subset main-
tains representativeness across different reasoning types and
question categories.
RL Training. In the second phase, we train the resulting
model on the full AVQA training set [28]. AVQA comprises
57,335 question-answer pairs across 45, 867 unique audio-
visual samples from daily activities. The dataset is split into
40, 127 training samples and 17, 208 validation samples. For
the RL phase, we use the full training set to further improve
the model’s audio-visual reasoning capabilities through rein-
forcement learning, building upon the reasoning foundations
established during the SFT phase.

4.2. Benchmark Datasets

We evaluate our model on four representative datasets
that span different modality combinations to comprehen-
sively assess cross-modal reasoning capabilities: Daily-
Omni (video+audio), OmniBench (image+audio), AVQA
(video+audio, in-domain) and MMAR (audio-only) to exam-
ine potential overfitting on our training distribution.

DailyOmni [32] is a benchmark for evaluating multi-
modal large language models on real-life audio-visual sce-
narios that require joint reasoning across video, audio, and
textual information. The dataset contains 684 videos and
1,197 question-answer pairs (550 from 60-second videos,
647 from 30-second videos) covering all 11 YouTube cate-
gories to ensure diversity of topics, styles, and acoustic envi-
ronments. The questions are deliberately designed to force
integration of modalities, moving beyond simple perception
to complex reasoning tasks that require understanding of
concurrent multimodal phenomena including speech, music,
and environmental sounds.

OmniBench [13] was designed to evaluate large language
models’ ability to integrate image, audio, and text inputs
for cross-modal reasoning. The benchmark contains 1, 142
question-answer pairs organized into 8 task categories: Ac-
tion & Activity, Story Description, Plot Inference, Object
Identification & Description, Contextual & Environmental,
Identity & Relationship, Text & Symbols, and Count &
Quantity. Each sample includes multiple-choice questions

with corresponding image and audio content, with audio
clips averaging 9.22 seconds in duration.

AVQA [28] is a large-scale benchmark containing 57,015
question-answer pairs across 45, 867 videos designed to eval-
uate models’ ability to reason over both audio and visual
content. The dataset features high-quality manual annota-
tions and questions that specifically require integration of
both modalities, making it well-suited for evaluating gen-
uine cross-modal reasoning capabilities rather than single-
modality shortcuts.

MMAR [17] is an audio-only reasoning benchmark de-
signed to evaluate models’ ability to perform complex rea-
soning tasks using solely auditory information. We include
MMAR to assess how well our cross-modal training ap-
proach transfers to single-modality audio reasoning scenar-
ios. The benchmark provides a controlled evaluation en-
vironment to understand whether the multimodal reason-
ing capabilities developed through our teacher aggregation
methodology can effectively generalize to audio-only tasks.

4.3. Implementation Details

For all experiments, we use Qwen2.5-Omni-3B [27] as the
base student model with frozen vision and audio modules.
Fully supervised fine-tuning is conducted on 18, 279 samples
over 1 epoch with an effective batch size of 32 (1 sample per
device x 8 gradient accumulation steps x 4 H100 GPUs).
We use a learning rate of 2e — 6 with cosine scheduling,
AdamW optimizer (57 = 0.9,82 = 0.999,¢ = le — 8),
weight decay of 0.01, and 100 warmup steps. Training em-
ploys DeepSpeed ZeRO Stage 2 optimization with CPU of-
floading and bfloat16 precision. For reinforcement learning,
we use identical infrastructure with GRPO-specific hyperpa-
rameters: group size G = 4, clipping parameter ¢ = 0.2, KL
regularization coefficient 5 = 0.01, and temperature 1. For
the reasoning length reward, we set the optimal target length
to 4 = 100 words with a standard deviation of 0 = 20
words, and the target range for the bonus to w,,;, = 200
and w4, = 300 words.

4.4. Comparison to State-of-the-Art

Table 3 shows the performance of the proposed model in
comparison to existing audio-visual reasoning models across
four benchmark datasets. The 3B parameter model achieves
strong performance, both in terms of absolute accuracy and
relative improvement over our reproduced baseline. For
the case oof zero-shot performance on DailyOmni and Om-
niBench, the model achieves 49.2% accuracy on DailyOmni,
and 56.3% accuracy on OmniBench, outperforming 3B base-
lines and remaining competitive with 7B models. It further
shows that the resulting model improves significantly by
+6.1 percentage points (56.3% vs. 50.2%) over our repro-
duced baseline, whereas AVATAR-3B’s reported gain over
their baseline is +3.4 points (45.8% vs. 42.4%). Note that



. DailyOmni OmniBench AVQA' MMAR
Model #Params  Reasoning | ., "\ o) (Image+Audio) | (Video+Audio) | (Audio-Only)
7B Audio-Visual Models
Qwen2.5 Omni [27] 7B X 44.0 44.2 - 56.7
Qwen2.5 Omni* [27] 7B X 51.5 50.7 84.9 56.5
Echolnk [26] 7B v 46.2 46.5 - -
Omni-R1 [31] 7B v 46.8 46.9 - -
HumanOmni [30] 7B v 47.6 44.9 - -
Ola-7B [14] 7B X 52.3 453 - -
AV-Reasoner [16] 7B v 53.8 48.3 - -
AVATAR [11] 7B v 47.0 49.1 - -
Modality-Specific Teachers
Kimi-VL-Thinking [21] - v - 33.5 - N/A
AF3 (think) [8] - v - 28.9 - 60.1
3B Audio-Visual Models
Qwen2.5 Omni [27][11] 3B X 429 42.4 - -
AVATAR [11] 3B v 44.7 (+1.8) 45.8 (+3.49) - -
Qwen2.5 Omni* [27] 3B X 43.1 50.2 88.3 53.7
AVRT (Ours) 3B v 49.2 (+6.1) 56.3 (+6.1) 91.1 (+2.8) 57.3 (+3.6)

Table 3. Comparison of audio-visual reasoning models on benchmark datasets. DailyOmni, OmniBench, and MMAR are tested in zero-shot
mode without further finetuning. AVQA results are considered fine-tuned since the training dataset is derived from AVQA'’s training set. We
report reproduced baseline results for Qwen2.5 Omni marked with *.

we could not replicate [1 1] directly, so we report gains rela-
tive to the respective Qwen2.5-Omni-3B baselines.

Next, we consider AVQA as a case of in domain-
validation. The model here achieves 91.1% accuracy, show-
ing a +2.8 percentage point improvement over the repro-
duced Qwen2.5-Omni-3B baseline (91.1% vs. 88.3%).
While this improvement is more modest compared to other
benchmarks, it is important to note that AVQA represents a
fine-tuned evaluation scenario since the training dataset is
derived from AVQA’s training set.

For MMAR, an audio-only reasoning benchmark, the
model achieves 57.3% accuracy, outperforming the baseline
by +3.6 percentage points (57.3% vs. 53.7%). The improve-
ment on MMAR validates that the audio reasoning capabili-
ties developed through the teacher aggregation methodology
generalize effectively beyond the multimodal training do-
main approaching that of the specialized audio teacher AF3
(think) (60.1%). This indicates that training with aggregated
multimodal reasoning chains can also lead to strong single-
modality capabilities as result of audio-visual learning.

Overall, the results show that reasoning-capable multi-
modal models are able to outperform their non-reasoning
counterparts across parameter sizes, validating the impor-
tance of structured reasoning in audio-visual tasks.

4.5. Ablation Studies

Evaluation of SFT fine-tuning. We first asses the impact of
the supervised fine-tuning step on the generated reasoning

traces compared to the Qwen2.5-Omni 3B baseline, as well
as to the same model trained only with an RL objective. As
shown in Table 4, simply training the model with an RL ob-
jective leads to an improvement of 2.1% (52.3% vs. 50.2%)
on the audio-visual setting. The proposed 2-stage training
with a SFT cold-start based on the generated reasoning traces
further improves performance to 56.3%, an additional gain
of 4.0 points over the RL-only baseline. We hypothesize that
SFT provides two key benefits for the subsequent RL stage.
First, format learning: SFT teaches the model the structured
reasoning format (thinking section followed by answer), en-
suring high R ormat and Riepgen rewards from the start of
RL training. Second, reasoning priors: The model learns
cross-modal correlation patterns from the distilled traces,
which guide RL exploration toward productive reasoning
strategies rather than exploring randomly.

Single Modality Performance. To further investigate the im-
pact of training on multimodal data on the respective single-
modality performance, we evaluate the model using one
modality at a time. As shown in Table 4, the results demon-
strate that multimodal training with the proposed reasoning
trace aggregation approach not only leads to improvements
on audio-visual settings, but also on the single-modality per-
formance. This can be considered as an indication for reason-
ing transfer learning as the SFT dataset is composed mainly
of questions that require both audio and vision (99.0%) (see
supplementary material) and as both our supervised fine-
tuning (SFT) with reasoning traces plus RL and the RL-only



Model SFT RL Mod. OmniBench

Qwen2.5-Omni 3B x x A 394
(Baseline) x x v 42.7
X X AV 50.2

Qwen25-Omni3B+RL < Y A 41.1 (+17)

(Baseline+RL) x v v 43.2 +0.5)

X v AV 52.3 (+2.1)

v v A 41.9 (25)

AVRT (Ours) v v A% 45.8 (+3.1)

v v AV 56.3 (+6.1)

Table 4. Impact of training stages with audio-visual training data
evaluated on single modality as well as on joint audio-visual per-
formance. We evaluate using only audio (A), only vision (V), and
both modalities (AV) on OmniBench.

Reasoning Chain Modality OmniBench
No SFT (Baseline+RL) 52.3
Audio-Only SFT 52.5
Video-Only SFT 50.8
Audio-Visual SFT (Ours) 56.3

Table 5. Ablation on reasoning chain types for SFT. Models are
fine-tuned based on the different reasoning chains, followed by
AV-RL training. Our audio-visual reasoning chain aggregation
outperforms single-modality chains.

baseline are trained solely on audio-visual inputs, without
any modality dropout or single-modality augmentation.

Reasoning trace types. To validate the effectiveness of
the audio-visual reasoning trace aggregation, we compare
the approach against alternative supervision strategies. As
shown in Table 5, we evaluate models trained with: (1) no
SFT (RL only, +2.1), (2) SFT on audio-only reasoning traces
(+0.8), (3) SFT on video-only reasoning traces (+1.9), and
(4) audio-visual aggregated traces (+6.1), all compared to
the Qwen2.5-Omni 3B baseline (50.2%). The audio-visual
reasoning traces achieve the best performance at 56.3%, sub-
stantially outperforming single-modality alternatives. This
demonstrates that aggregating diverse reasoning perspectives
from both modalities provides more effective supervision
than training on single-modality traces, which may introduce
modality-specific biases that hinder cross-modal integration.

Different merger models. We investigate the impact of
using different teacher models for cross-modal aggregation
in our pipeline. As shown in Table 6, we compare two
merger models: Gemma3-12B-It and Qwen2.5-14B-Instruct.
Both models improve over the Qwen2.5-Omni 3B baseline
(50.2%), with Qwen2.5-14B-Instruct achieving 56.3% (+6.1
points) compared to 48.5% (-1.7 points) for Gemma3-12B-
It. Notably, during training, we observe that the model
fine-tuned with reasoning traces generated by Qwen2.5-14B-
Instruct converged significantly faster to the multiple-choice

LLM Merger Model Student Model OmniBench
Gemma3-12B-It Qwen2.5-Omni-3B 49.5
Qwen2.5-14B-Instruct  Qwen2.5-Omni-3B 56.3

Table 6. Ablation on merger models. Using an LLM merger with
the same backbone as the student model enhances performance.

Reward Components OmniBench

Baseline 43.1 50.2
Roce + Ryormat 45.5 (+2.4) 54.7 (+4.5)
Race + Riormat + Riength  49.2 +6.1) 56.3 (+6.1)

DailyOmni

Table 7. Ablation on reasoning chain length reward. Including a
length reward improves performance.

Model Easy Medium Hard

Baseline  70.5 53.5 453
Ours 76.9 59.2 51.8

Table 8. Performance on different OmniBench difficulty subsets.
Our model outperforms the base model on all difficulty levels.

question (MCQ) format compared to the Gemma3-based
merger. This suggests that using a teacher model from the
same architectural family as the student model facilitates
more efficient knowledge transfer, as the student model does
not need to adapt to a substantially different token distribu-
tion during fine-tuning.

Reasoning length reward. Next, we consider the impact
of incorporating a reward function that encourages optimal
reasoning trace length. As shown in Table 7, compared to
the Qwen2.5-Omni 3B baseline (DailyOmni 43.1%, Om-
niBench 50.2%), the format and accuracy rewards alone
achieve 45.5% and 54.7% respectively. Adding the length re-
ward further improves to 49.2% (+6.1 points on DailyOmni)
and 56.3% (+6.1 points on OmniBench). This consistent
improvement demonstrates that maintaining an sufficient rea-
soning trace length is effective for audio-visual reasoning.

Omnibench Subsets. To finally analyse the impact of the
reasoning capabilities, we categorize OmniBench questions
into difficulty subsets based on teacher-model performance:
easy (both teachers correct, 64 questions), medium (one
teacher correct, 456 questions), and hard (neither correct,
619 questions). As shown in Table 8, our model outper-
forms the Qwen2.5-Omni baseline across all difficulty lev-
els: easy (76.9% vs. 70.5%, +6.4 points), medium (59.2%
vs. 53.5%, +5.7 points), and hard (51.8% vs. 45.3%, +6.5
points). The easy subset shows the largest improvement but
exhibits greater variability due to its smaller sample size.
Overall, the predominance of hard questions (54%) further
demonstrates that OmniBench is well-suited for evaluating
cross-modal reasoning.



"Bassy
resonant
sound"

What is the acoustic reason why the place in the
image would give rise to the art form heard in the
audio?

[...]

D. The image shows a meadow. The audio is a bass
hootenanny. Such a place is suitable for this art form

because the long wavelengths of the bass sound can be

diffracted around the hill, thus allowing others in the
distance to hear the sound. [4

<think>The image depicts a vast, open meadow with
rolling hills and a winding river, suggesting a natural,
open environment. The audio clip contains a deep,
resonant sound, which is characteristic of a bass
hootenanny. Given the vastness of the meadow, the
sound waves are likely to be reflected and diffracted,
creating a rich, resonant quality that can be heard
from a distance. This aligns well with the idea that
the long wavelengths of the bass sound can be
diffracted around the hills, allowing others in the
distance to hear the sound clearly. The combination
of the open, natural setting and the deep, resonant
sound of the bass hootenanny makes this scenario

plausible.
</think><answer>D</answer>

"Male voice
Screaming
‘Jenny!™"

What is this man doing?

A. Pursuing fugitives.

B. Searching for someone on an empty square.
C. Shooting with a gun.

D. Searching for people in the crowd. 4

<think>The image shows a man in military attire
standing in a crowd, with several people around
him. The man appears to be looking intently at
something or someone within the crowd. Given the
options, the most plausible scenario is that he is
searching for people in the crowd. The presence of a
crowd and the man's focused gaze suggest that he is
looking for specific individuals among the many
people present. The other options do not fit the
context: there is no indication of pursuit, searching
for someone on an empty square, or shooting with a
gun. The audio clip includes a shout of "Jenny!"
which could be a clue that the man is searching for
someone named Jenny within the crowd. However,
without additional context, the most
straightforward interpretation is that he s
searching for people in the crowd.
</think><answer>D</answer>

"Sudden
firework
sounds"

Why did the red wine spill on her face?

A. Awoman who dislikes her threw red wine on her
face.

B. Her husband threw red wine on her face.

C. The woman with golden long hair was startled by a
firework sound.

D. The woman with golden short hair was startled by a
firework sound. {4

<think>The image shows a woman with golden short
hair, wearing a sparkling necklace and red lipstick,
with wine on her face. The background is a dark,
possibly indoor setting with shelves, suggesting a
library or similar environment. The audio clip
includes a loud, sharp sound followed by a "pop,"
which could be interpreted as a firework or similar
explosive event. Given the visual context of the
woman's appearance and the audio of a loud, sharp
sound, the most plausible scenario is that the
woman was startled by a firework sound and the
wine on her face is a result of being startled rather
than any deliberate action.Therefore, the most
logical conclusion based on the combined audio and
visual evidence is that the woman was startled by a
firework sound.</think><answer>D</answer>

Legend: = Input Image; (####) = Input Audio;

= Student Model's Reasoning Chain; text = Visual Cues; text = Auditory Cues

Figure 2. Qualitative results of the AVRT-trained model on OmniBench: It shows that the model trained on the respective AVRT-20K data is
able to retrieve audio and visual information to answer the question, to combine the two sources of information, and to generate high-quality
reasoning chains based on different cues in both modalities. Best viewed in color and zoomed in.

4.6. Qualitative Results

We finally provide qualitative results of reasoning traces pro-
duced by the student model after fine-tuning on the proposed
AVRT reasoning traces on OmniBench in Fig. 2. The re-
sults show that with only SFT on the generated reasoning
traces, the model is able to reason about the image and audio
content to answer the question. In the first example, the
model correctly associates the acoustic properties of a bass
“hootenanny” with the open meadow environment, demon-
strating understanding of how sound propagates differently
in open versus enclosed spaces. The second example show-
cases more sophisticated multi-modal reasoning, where the
model uses visual cues (people around the main character)
to contextualize the audio (male voice calling “Jenny!””) and
correctly identifies the scenario as searching for people in
a crowd among multiple plausible options. The third exam-
ple illustrates the model’s ability to connect temporal audio
events (firework sounds) with visual evidence (wine spill
on face). As shown in the figure, the model learns to in-
corporate both visual and auditory cues to arrive at correct
answers. These results are on OmniBench, which is a particu-
larly challenging dataset where 54% of questions fall into the
“hard” category (neither teacher correct). The model’s reason-
ing traces demonstrate cross-modal integration rather than
relying on single-modality shortcuts. Notably, the model

successfully generalizes from its training domain (AVQA
videos with 8 frames and audio) to a different evaluation
domain (single static images paired with audio), suggesting
that the reasoning capabilities learned through our teacher
aggregation approach transfer effectively across different
input formats and temporal structures.

5. Conclusion

We introduced AVRT, a novel framework that generates
high-quality audio-visual reasoning data by distilling knowl-
edge from specialized single-modality teachers, enabling
effective supervised fine-tuning of student models with
minimal reinforcement learning post-training. To this
end, the pipeline uses two specialized reasoning teach-
ers, one for audio and one for vision, to extract expert
reasoning traces of each modality separately. The result-
ing traces are then merged and formatted by an LLM
merger model into a single, multimodal reasoning trace.
We then use those reasoning traces as cold-start in a
two stage training pipeline. The resulting 3B parameter
model achieves state-of-the-art performance: 56.3% on Om-
niBench, 49.2% on DailyOmni, and 57.3% on MMAR, es-
tablishing new benchmarks for efficient audio-visual under-
standing.
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AVRT: Audio-Visual Reasoning Transfer through Single-Modality Teachers

Supplementary Material

This supplementary material provides additional dataset
statistics, analysis of design decisions in our data pipeline,
experiments with masked modalities, results on scaling to
7B models, and the complete prompts for reproducibility.

5.1. Additional Dataset Statistics

Table 9. Additional statistics for the AVRT-20K dataset showing
answer option distribution and question modality requirements.

Answer Option Train/ Val (%)

A 24,5/ 27.1

B 252 /273

C 249 /233

D 254 /223
Question Relations Train / Val (%)
Both (Audio + Visual) 99.0 / 98.9
Sound Only 0.7 /0.7
Visual Only 03/03

The AVRT-20K dataset has balanced answer choices
with each option (A-D) appearing roughly 25% of the time.
Nearly all questions (99%) require both audio and visual
information to answer correctly, with less than 1% being
answerable using only one modality.

5.2. Data Generation and Filtering Strategy

Filtering Strategy: Both Teachers Must Be Correct. In
this work, we adopt a filtering strategy that retains only
samples where both single-modality teacher models can
correctly answer. A potential concern with this filtering
approach is that it might bias the dataset toward “easy” sam-
ples, removing challenging questions that could improve
model robustness. However, our evaluation on OmniBench
difficulty subsets (Table 8 in the main paper) directly ad-
dresses this concern. We categorize OmniBench questions
based on teacher performance: easy (both teachers correct),
medium (one teacher correct), and hard (neither teacher cor-
rect). Our AVRT model outperforms the Qwen2.5-Omni
baseline across all difficulty levels, including a +6.5 point
improvement on hard questions where neither teacher was
correct during their evaluation. This demonstrates that train-
ing on high-quality filtered data does not create a harmful
bias toward easy samples.

Role of Ground-Truth Answers in Training Data Gener-
ation. Another important design choice in AVRT is that

the merger model receives the correct answer during training
data generation, as shown in Figure 6. We emphasize that
this ground-truth answer is provided only to the merger LLM
during the data generation phase, and the student model
never sees correct answers during either supervised fine-
tuning or inference. The merger’s role is to synthesize coher-
ent reasoning traces that integrate audio and visual evidence,
and the student model must learn to reproduce this reasoning
process without access to labels.

5.3. Model’s Behavior with Missing Modality

To investigate whether AVRT hallucinates modality-specific
information when one modality is unavailable, we evalu-
ate the model with masked inputs. We test the model in
three conditions: (1) both audio and visual inputs provided
(standard setting), (2) only video frames with silent/masked
audio, and (3) only audio with blank/masked video frames.
This experiment examines whether the model acknowledges
missing information or fabricates details about the absent
modality. The evaluation uses the same OmniBench test set,
and we analyze both quantitative performance and qualitative
behavior of the model.

Table 4 in the main paper shows that performance de-
grades by 14.4 points when only audio is available and by
10.5 points when only video is available, demonstrating that
AVRT appropriately relies on both modalities. Figure 3
provides a qualitative example comparing reasoning traces
across three conditions. When both modalities are provided,
the model explicitly integrates evidence using phrases like
“From the audio...” and “From the visual inspection...” to ar-
rive at the correct answer. When only video is available, the
model constrains reasoning to visual observations (“Upon
reviewing the image...”) without fabricating audio content,
though this leads to an incorrect prediction due to missing
acoustic cues. Similarly, with audio-only input, the model
focuses exclusively on sounds without hallucinating visual
details like clothing or positions. While this behavior is en-
couraging, it could be sensitive to prompting strategies, and
the model may occasionally reference missing modalities
due to strong pre-training priors.

5.4. Experiments with Qwen2.5-Omni 7B

To demonstrate that the AVRT pipeline is not limited to
3B models, we apply the same methodology to the larger
Qwen2.5-Omni 7B base model. Table 10 compares the per-
formance of 3B and 7B models with and without AVRT train-
ing. The results show that AVRT 3B already outperforms the
vanilla Qwen2.5-Omni 7B baseline on OmniBench (56.3%
vs 50.7%), demonstrating the efficiency gains from audio-



Question: What are the men doing?
Options: (A) The man in jeans is taking notes from the newspaper. (B) The man in purple is reading the newspaper. (C) The man in jeans is
playing a crossword puzzle. (D) The man on the table is doing a crossword puzzle.
Ground Truth: C

Both Audio + Video

Prediction: C

Reasoning:

From the audio, there is a clear sound of some-
one speaking, which suggests that the men are
engaged in an activity that involves verbal com-
munication...

From the visual inspection, I observe two men
sitting at a table. One of them is wearing jeans
and the other is in purple. Both appear to be
focused on a piece of paper in front of them.
The presence of a newspaper on the table fur-
ther supports the idea...

Option C mentions the man in jeans is playing
a crossword puzzle...

Prediction: B
Reasoning:

newspaper.

another activity...

J

Upon reviewing the image, I notice that there
are two men present. The man in purple is
holding a newspaper and appears to be reading
it. The man in jeans is sitting next to him,
but his attention is not clearly focused on the

Given the options, the most plausible scenario
is that the man in purple is reading the news-
paper, while the man in jeans is engaged in

Video Only Audio Only

Prediction: B

Reasoning:

Upon listening to the audio, I noticed a clear
and distinct sound of a newspaper being han-
dled, specifically the sound of pages being
turned. This sound is consistent with some-
one reading a newspaper.

Additionally, there was a brief mention of a
crossword puzzle, but it was not the main focus
of the audio. The primary activity described
was reading a newspaper, which aligns with
option B...

J

Figure 3. Example of model reasoning traces when different modalities are masked. With both modalities (left), the model integrates audio
and visual evidence. With video only (center), reasoning focuses on visual observations without hallucinating audio content. With audio
only (right), the model constrains itself to acoustic features without fabricating visual details. Color highlights indicate modality-specific

reasoning: audio and visual.

visual reasoning trace aggregation. The AVRT methodology
is model-agnostic and can be applied to any base audio-
visual language model, with the gains from merging single-
modality expertise expected to transfer to larger model sizes.

Table 10. Performance comparison across model sizes and training
approaches. AVRT 3B outperforms the 7B baseline on OmniBench,
demonstrating efficiency gains from reasoning trace aggregation.

Model DailyOmni OmniBench

Qwen2.5-Omni 3B 43.1 50.2

AVRT 3B (Ours) 49.2 56.3

Qwen2.5-Omni 7B 51.5 50.7

AVRT 7B (Ours) 54.4 57.1
5.5. Prompts

In this section, we provide the prompts used for both teacher
models (Kimi-VL-Thinking and Audio Flamingo 3 (think)),
and the merger model (Qwen2.5-14B-Instruct).

5.5.1. Visual Teacher Prompt

We design the visual teacher prompt to elicit detailed tem-
poral reasoning from video frames. As shown in Figure 4,
the prompt instructs Kimi-VL-Thinking to analyze 8 evenly
distributed frames from each video, providing both a com-
prehensive visual description and explicit reasoning that con-
siders temporal progression. The prompt includes a concrete
example that demonstrates the expected response format,
encouraging the model to describe what it observes across
frames, reason about the visual evidence, and arrive at the

correct answer. For questions requiring straightforward vi-
sual identification, the prompt allows for brief reasoning
while still maintaining the descriptive component.

5.5.2. Audio Teacher Prompt

For the audio teacher, we adopt the prompts from the Audio
Flamingo 3 paper to ensure optimal performance and main-
tain consistency with the original model’s training methodol-
ogy. As illustrated in Figure 5, the audio prompt follows a
similar structure to the visual prompt, instructing the model
to provide a thorough audio description, evaluate each an-
swer option with explicit reasoning, and then provide the
final answer. The prompt includes an example that demon-
strates how to analyze audio characteristics (e.g., beat, vo-
cals, production style) and map them to appropriate contexts.
This approach ensures that the audio teacher generates rea-
soning traces that complement the visual analysis.

5.5.3. Merger Prompt

The merger model plays a critical role in combining the
separate audio and visual reasoning traces into a unified
multimodal analysis. Figure 6 shows the prompt used for
Qwen2.5-14B-Instruct, which receives the question along
with both the audio and visual analyses generated by the
respective teacher models. Importantly, the prompt instructs
the merger to integrate evidence from both modalities natu-
rally, as if discovering the answer through its own reasoning
process rather than acknowledging that it already has access
to the correct answer. The merged reasoning is formatted
within <think>tags, followed by the final answer in <an-
swer>tags, creating training data that teaches the student
model how to jointly reason about audio and visual inputs.



You are an intelligent vision agent. I will provide you with 8 representative frames from a video (evenly distributed across the video
duration) and a question about the video content in MCQ format. You need to first provide a thorough description of what you’re
seeing across these video frames, then add Chain-of-Thought-type reasoning to analyze the visual content, and finally provide your
answer. Here is an example:

Input Question: What type of activity is happening in this video? Choose one among the following options:(A) Crime thriller scene
(B) Documentary narration\n(C) Romantic comedy scene\n(D) Action movie or racing scene\n

Expected response format:\n

Visual Description: Across these video frames, I can see a progression of high-speed chase scenes with vehicles moving rapidly
through an urban environment. The frames show consistent dynamic motion, intense lighting, and what appears to be an ongoing
action sequence with cars and possibly motorcycles. The temporal progression across frames reveals the continuous high-energy
nature of the content.\n

Reasoning: Based on the consistent high-speed vehicle movement visible across multiple frames, the sustained dynamic camera
work, intense lighting throughout the sequence, and the overall action-oriented visual elements that persist across the video timeline,
this content would be most suitable for action-focused scenarios that require high-energy sequences. The visual elements strongly
suggest this is an action movie or racing scene rather than other genres like crime thriller, documentary, or romantic comedy.\n
Answer: (D) Action movie or racing scene\n

Follow this format: provide a detailed visual description analyzing the temporal progression across frames, then your reasoning
considering the full video context and evaluating each option, then the final answer. For answers that do not require complex
reasoning (e.g., for a question like ”What color is the object?” or "How many people are in the image?”” where the answer is direct),
still provide the visual description but keep the reasoning brief.\n

Here is the input question:

Figure 4. The prompt used for the visual teacher model (Kimi-VL-Thinking). The prompt guides the model to provide temporal visual
analysis across video frames, followed by explicit reasoning and a final answer.

You are an intelligent audio agent. I will provide you with an audio and a question about the audio in MCQ format. You need to
first provide a thorough description of what you’re hearing in the audio, then add Chain-of-Thought-type reasoning to analyze the
audio content and evaluate each option, and finally provide your answer. Here is an example:

Input Question: What type of soundtrack would this piece be most suitable for? Choose one among the following options:(A)
Crime thriller movie (B) Documentary narration\n(C) Romantic comedy movie\n(D) Futuristic movie or car racing video game\n
Expected response format:\n

Audio Description: This audio features a high-energy electronic track with a driving beat, synthesized sounds, and confident rap
vocals. The lyrics mention themes of speed and success, including phrases like ’living automatic’ and references to new cars. The
production has a modern, polished sound with heavy use of electronic elements.\n

Reasoning: Based on the driving beat, confident rap vocals, mentions of speed and success, and overall high-energy modern
production with electronic elements, this piece would be most suitable for high-octane, modern scenarios that require energetic
background music. Evaluating the options: (A) Crime thriller movies typically use more suspenseful, darker soundtracks; (B)
Documentary narration usually requires more neutral, informative background music; (C) Romantic comedy movies generally
feature lighter, more melodic soundtracks; (D) Futuristic movies or car racing video games would benefit from exactly this type of
high-energy electronic music with themes of speed and technology.\n

Answer: (D) Futuristic movie or car racing video game\n

Follow this format: provide a detailed audio description first, then your reasoning that evaluates each option, then the final answer.
For answers that do not require complex reasoning (e.g., for a question like "Who performs the vocals in this song?”’ or ”What
primary instrument is featured in this piece?”” where the answer is direct), still provide the audio description but keep the reasoning
brief.\n

Here is the input question:

Figure 5. The prompt used for the audio teacher model (Audio Flamingo 3 rhink). The prompt instructs the model to describe audio
characteristics and provide explicit reasoning that evaluates each answer option.



You are an intelligent multimodal agent. I will provide you with a question in MCQ format, along with separate audio and visual
analyses from specialized models. Your task is to merge these analyses into a coherent reasoning chain that integrates both
modalities to arrive at the correct answer.

Question: {question}{formatted_choices}

Correct Answer: {correct_answer}

Audio Analysis: {audio_reasoning}

Visual Analysis: {vision_reasoning}

Instructions:

- Don’t acknowledge that you already know the answer!

- Act as if you generated the reasoning and then you came across the right answer by yourself!

- Write plain English, but this time, format your merged reasoning inside <think>... </think>

- At the end, output your final answer (just the letter, e.g., A, B, C, or D) inside <answer>... </answer>

- Write sentences that integrate both audio and visual evidence

- Explain how the audio and visual clues work together to lead you to the conclusion

- Make the explanation thorough but succint

Combined Analysis:

Figure 6. The prompt used for the merger model (Qwen2.5-14B-Instruct). The prompt guides the model to integrate audio and visual
analyses into a coherent multimodal reasoning trace formatted with <think>and <answer>tags.
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