TTA-Vid: Test-Time Adaptation for Long Instructional Videos
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Abstract

Understanding instructional videos requires both se-
mantic alignment between visual and textual modalities as
well as temporal reasoning across frames. In this work, we
leverage the paradigm of Test-Time Reinforcement Learn-
ing to video-language data to allow to adapt a pretrained
model to incoming video samples at test-time without ex-
plicit labels. The proposed test-time adaptation for video
(TTA-Vid) combines two key components that work simul-
taneously: (1) a test-time adaptation that performs step-
by-step reasoning at inference time on multiple frame sub-
sets, using a batch-aware frequency-based reward com-
puted across different frame subsets as pseudo ground truth,
and (2) a multi-armed bandit strategy for adaptive frame se-
lection that learns to prioritize informative frames, guided
by the same reward formulation. Because the adaptation
occurs entirely at test time, our method requires no ground-
truth annotations or dedicated training splits. Our eval-
uation shows that TTA-Vid yields consistent improvements
across instructional video reasoning tasks, on the test data
as well as for the generalized case, highlighting the poten-
tial of test-time reinforcement learning for temporal multi-
modal understanding. '

1. Introduction

Understanding the content of long videos and reasoning
over it remains a fundamental challenge in video compre-
hension and multimodal learning. Recent progress in large
Vision Language Models (VLMs) such as the InternVL
[13, 55, 72] or QwenVL [4, 6] series, and video reason-
ing models such as Video-R1 [21] and VideoRTS [60] has
brought remarkable advances in e.g. captioning or ques-
tion answering tasks. However, when applied to lengthy,
highly structured, and conceptually rich educational or in-
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structional videos, these models struggle to produce coher-
ent reasoning and accurate answers. Instructional videos
can be considered particularly important and underexplored
in this domain: as they are usually recorded for human
learning environments, they often feature visual and verbal
content that is inherently structured over time, with one in-
formation building up on another. Building models that can
capture such content provides a compelling test of whether
Al systems can capture relevant information over time and
reason and generalize over it. Despite their potential, exist-
ing video reasoning models face some critical limitations in
this context. First, they rely on common video datasets such
as ActivityNet-QA [65] for training, covering only narrow
domains, and as a result fail to capture more complex rea-
soning structures as can e.g. be found in real-world educa-
tional content. Second, most existing methods process only
a small set of frames using static or random sampling, ne-
glecting the fact that different frames contribute unequally
to video understanding. As a result, models often attend to
visually salient but semantically irrelevant moments, lead-
ing to inconsistent or shallow comprehension.

To overcome these limitations, we propose a new test-
time learning framework for video reasoning. Orthogonal to
supervised approaches, test-time adaptation methods train
the model at inference time without any ground-truth la-
bels by leveraging frequency-based self-reinforcement sig-
nals. Specifically, given an instructional video and a ques-
tion, the proposed method samples multiple sets of frames
and generates multiple candidate reasoning traces and an-
swers. A batch-wide frequency reward is computed by mea-
suring the empirical probability of each answer across all
generated outputs, combined with an entropy-based confi-
dence penalty, allowing the model to reinforce frequently
occurring answers while suppressing high-uncertainty gen-
erations. This enables unsupervised adaptation during in-
ference, effectively turning any pre-trained vision-language
model into a domain-aware reasoning model.

Additionally, we introduce a novel frame importance
distribution learning mechanism based on the multi-armed
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Figure 1. TTA-Vid adapts vision-language models at inference by
sampling multiple frame subsets, enforcing majority-consistency
among generated answers, and updating a frame-importance dis-
tribution via a multi-armed bandit. This yields video-specific
adaptation without labels, improving consistency and highlight-
ing frames most relevant for reasoning.

bandit formulation. Instead of relying on fixed frame sam-
pling, our method maintains a learnable distribution that as-
signs importance scores to frames based on their contribu-
tion to successful reasoning. This distribution is optimized
using test-time reinforcement learning signals derived from
a batch-wide frequency reward that combines empirical an-
swer frequencies with an entropy-based confidence penalty,
gradually learning which frames matter most for answering
each question. As test-time training progresses, the model
converges toward a video-specific sampling policy, high-
lighting frames that are semantically important. This not
only improves efficiency but also provides an interpretable
measure of what the model has learned to attend to during
reasoning. The resulting approach requires no additional
supervised data, but instead leverages the inherent redun-
dancy in long instructional videos to build a self-supervised
adaptation loop at test time, making it particularly well-
suited for educational and procedural content.

We evaluate the proposed method on two instructional
and educational video QA benchmarks, VidleoMMMU [24]
and MMVU [71], and two distinct vision-language back-
bones, InternVL-3 [72] and Qwen2.5-VL [6] and show that

the proposed test-time adaptation approach consistently im-
proves answer consistency. Our evaluation further shows
that the improvement is not only limited to the test batch
that it was applied to, but also extends to unseen test data,
allowing for a generalized test-time adaptation. Our results
overall show that test-time reinforcement learning can serve
as a powerful and efficient tool for video reasoning, paving
the way for models that can autonomously adapt and reason
over long, structured video content.

The contributions of this work can be summarized as fol-
lows: (a) TTA-Vid: A new framework that enables vision-
language models to adapt to long video reasoning tasks
without labeled data using test-time reinforcement learning.
(b) A multi-armed bandit strategy that learns frame impor-
tance distributions for efficient and interpretable reasoning
using the test-time training reward signals. (c) An extensive
evaluation that shows consistent performance gains for the
test set as well as for the generalized case across multiple
instructional video question-answering datasets and model
backbones, validating the effectiveness of our approach.

2. Related Work
2.1. Video Reasoning Models

The success and applications of large language models
(LLMs) [8, 15, 19,36, 39, 40, 53] have resulted in extending
their capabilities to multi-modal tasks, leading to the emer-
gence of vision-language models (VLMs) where the mod-
els reason over the visual content and video understanding
models enabling them to interpret and reason over dynamic
visual content [2, 4-6, 18, 25, 29-31, 34, 57, 66, 70, 72].
However, models like LLaMA-VID[33], VideoLLaMA?2
[14], LongVA [67], VISA [62] among others focus on video
perception tasks. On the other hand, works inspired by rea-
soning in language models [22, 27, 35, 42, 51, 64] such
as [12, 17, 43, 52, 61, 63] target image-based reasoning
using hand-crafted CoT structures. Several recent works,
[16, 37, 46, 54, 58, 69] have extended vision-language rea-
soning to the video domain. Video-R1 [21] introduces a T-
GRPO algorithm, specifically designed to handle temporal
information in videos. It utilizes two datasets: Video-R1-
CoT-165k for supervised finetuning (SFT) and Video-R1-
260k for reinforcement learning (RL) training. Video-RFT
[54] proposes a multi-expert driven, cognition-inspired CoT
curation pipeline. In this framework, an LLM first generates
preliminary CoTs based on rich, structured, and literal rep-
resentations of video content. A VLM then refines these
CoTs by conditioning them on the actual video input. This
process results in two datasets: VideoRFT-CoT-102K for
SFT and VideoRFT-RL-310K for RL training. In contrast,
Video-RTS [60] presents a different approach by combining
efficient RL with a video-adaptive test-time scaling (TTS)
strategy. All these methods depend on ground truth annota-



tions and large amounts of high-quality CoT and RL data.
In this work, we propose a test-time reinforcement learning
approach for long video reasoning in VLMs, which lever-
ages the majority answer as a reward signal.

2.2. Instructional Video Understanding

Instructional videos serve as a valuable medium for infor-
mation transfer and encompass a wide range of topics. As
such, they offer a rich source of diverse challenges and tasks
for research in computer vision [9, 10, 20, 23, 24, 28, 41, 68,
71]. Works such as [23, 28] leverage lecture video datasets
for tasks such as temporal segmentation, figure-to-text and
text-to-figure retrieval, and generation of slide explanations.
Multimodal Textbook [68] is a large-scale corpus compris-
ing a total of 22,000 class hours. It includes keyframes,
texts, symbols, formulas, along with ASR transcripts, all
organized in an interleaved structure, which can be used as
pretraining dataset for training large VLMs. Recently, sev-
eral benchmarks, including [11, 24, 41, 45, 71] have been
introduced to evaluate the multimodal understanding capa-
bilities of models on educational video content and to un-
derstand their reasoning capabilities.

2.3. Test-Time Training and Adaptation

Various LLM and VLM approaches have explored leverag-
ing unlabeled data through test-time adaptation and unsu-
pervised learning. Parameters of the models are adjusted
at inference or the methods learn from external unlabeled
datasets by optimizing objectives such as RL rewards, en-
tropy minimization, auxiliary self-supervised loss among
others [1, 7, 38, 47-49, 49, 73]. TTRL [73] utilizes repeated
sampling strategy during the rollout phase to accurately es-
timate the labels, followed by a majority voting reward ap-
plied on the given unlabeled data, and TTRV [44] extends
it by combining the frequency-based rewards with entropy
regularization on vision tasks such as classification and
VQA. Building on these ideas, our method extends test-time
adaptation to video understanding tasks, specifically for ed-
ucational videos containing reasoning based questions. We
incorporate a adaptive frame sampling strategy based on a
multi-armed bandit problem, which complements the test-
time adaptation, resulting in a novel framework for video
reasoning on educational and lecture video content.

3. TTA-Vid

Our method proposes a framework that allows a model
to adapt to a specific video at test time without ground-
truth labels. It is composed of two components that work
simultaneously: (i) Test-Time Adaptation (TTA) adapts
the model’s parameters using a reinforcement learning
paradigm guided by a novel, batch-aware reward signal, and
(ii) an Adaptive Frame Selection learns to identify and pri-
oritize the most informative frames in the video. To this

end, we frame the selection process as a multi-armed bandit
problem. The reward signal formulated for the TTA compo-
nent directly supervises the frame selection mechanism. We
leverage multiple subsets (or “views”) of frames from the
same video within a single batch, which allows the model
to efficiently explore the frame sampling space and learn
both what to predict and where to look. An overview of the
method is shown in Figure 2. We discuss both approaches
in detail in the following.

3.1. Test-Time Adaptation with Batch-Wide Fre-
quency Reward

We begin by representing an input video V' as an ordered se-
quence of frames: V = (f1, f2,..., fr). From this video,
we sample K subsets of frames {57, S2,...,Sk}. Given
a prompt x as the combination of a question and the frame
subset S, the model, parameterized by 6, generates an out-
put yy, from its policy 7o (yx |2 ). Note that practically, we
pool a new set of subsets at each epoch, following the dis-
tribution as described in Section 3.2. For simplicity of no-
tation, we assume the notation to refer to a single epoch.

To construct the reward signal, we generate /N candidate
outputs for each of the K subsets, creating a total pool of
K x N output candidates, with a single candidate denoted as
{ykn}fork=1,...,Kandn =1,..., N, and all samples
of the pool relating to prompt z, thus t the same question
and the same video, and corresponding to n rollouts for a
single subset k.

Our reward formulation extends the frequency-based re-
ward concept from TTRV [44] which estimates the empiri-
cal probability of an answer to be correct by calculating fre-
quency within the answers extracted from the rollouts for a
single image. Compared to that, we estimate the empirical
probability of an answer based on all N rollouts across all
K subsets. This approach leverages the diversity of views
of a video to create a more stable and robust reward sig-
nal. We use a fixed answer extractor function, h (e.g., a
regular expression), to parse the specific answer from each
generated output string vy . Let A be the set of all unique
answers found in the batch. We define the counts and the
empirical frequency for each unique answer a € A as:

K N c(a)
C((l) = Z Z 1[h(yk,n) = CL], p(a) = Z
k=1n=1

a’eA C(a/)
6]
To promote convergence and control for diversity [44], we
incorporate an entropy-based confidence weight. We calcu-
late the normalized entropy of the answer distribution p:

H(p)=—_ pla)logp(a),

acA
_ H(p)
log | A|

(2)
Hnorm (p)

€ [0,1].
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Figure 2. Overview of TTA-Vid: Our method simultaneously performs test-time adaptation of model parameters through a batch-aware
reinforcement learning objective and adaptively selects the most informative frames using a multi-armed bandit approach. Both components
leverage a shared reward signal computed across diverse video frame subsets within a single batch, enabling the model to learn what to

predict and which frames to attend to.

The final reward for an individual output ¥, , combines the
frequency score with this entropy penalty:

T(yk:,n) = p(h(yk,n)) — Q- Hnorm(p)7 3)

where « is a hyperparameter that controls the strength of
the entropy penalty. This reward structure encourages out-
puts that are frequent across the batch while simultaneously
penalizing the model for high uncertainty (high entropy) in
its overall answer distribution, pushing it toward more con-
fident predictions.

The reinforcement learning objective is to maximize the
expected reward, and the model parameters ¢ are updated
accordingly:

0 0+nVoEs, Eyoryiis0 @) ], )

where 7 is the learning rate. Following [73], we im-
plement this using Group Relative Policy Optimization
(GRPO) [42].

3.2. Multi-Armed Bandit Adaptive Frame Selection

While the TTA process adapts the model’s parameters, we
further incorporate an adaptive frame selection that learns
an optimal policy for sampling video subsets. We treat each
of the T" frames as an “arm” in a contextual multi-armed
bandit problem [3], where the goal is to learn a probability
distribution that favors frames that are most informative for
the given task.

We  maintain  nonnegative = weights W =
[wy,ws,...,wr| for the T frames, initializing w; = 1
for all . From these, we define a learnable probability

distribution over frames as p = [p1, pa, . .., pr]|, where

Wy
=7 - )

Initially, since all w; = 1, the distribution is uniform (p; =
1/T for all t). At each epoch, the K subsets {S1,..., Sk}
are sampled stochastically according to p.

The reward signal calculated for the TTA component
(see Eq. 3) is repurposed to guide the frame selection. For
each subset Sj, we calculate its average reward by averag-
ing the rewards of the N outputs generated from it:

1 N
k= 2 "W). 6)
n=1

This score, 7., reflects how informative the frames in subset
Si. were in contributing to high-frequency, high-confidence
answers. To update the frame distribution, we use a mul-
tiplicative weights algorithm. We first establish a baseline
reward, Tpaseline = % Zkkzl Tk, which represents the av-
erage performance across all subsets. The probabilities of
frames in subsets that performed better than this baseline
are increased, while those in underperforming subsets are
decreased.



The update for the weight w; of each frame ¢ is given by:

K
w?ew = Wt - €Xp (nfs Z(Fk - Fbaseline) . 1[t S Sk]) s

k=1

(7

where 7y is the frame selection learning rate and 1[t € Si]

is an indicator function. We then form the new sampling
probabilities by normalizing:

new
Wy

P = = ®)
' Z?:l w;ew

Integrated Adaptation Across Epochs. Our two com-
ponents, model parameter adaptation and frame distribu-
tion updates, are executed simultaneously within each test-
time epoch. The frame distribution evolves across epochs,
starting from a uniform distribution and gradually becom-
ing more focused on discriminative frames as the model’s
parameters simultaneously adapt to the specific video and
task. A key contribution of our approach is that the reward
signal computed for model adaptation (Eq. 3) is directly re-
purposed to supervise frame selection without requiring ad-
ditional labels. This enables us to leverage test-time RL
supervision to optimize two distinct objectives simultane-
ously: what the model should predict and where (which
frames) it should look. By grounding frame selection in
the empirical reward distribution from test-time rollouts, we
ensure that frames are prioritized based on their actual con-
tribution to the model’s predictions.

4. Experiments

4.1. Benchmarks

We evaluate the proposed method on two challenging
and diverse instructional video question-answering bench-
marks: VidleoMMMU [24] and MMVU [71].
VideoMMMU [24] is a multimodal, multi-disciplinary
benchmark that assesses LMM'’s ability to acquire and uti-
lize knowledge from videos. The dataset is divided into
six categories: Science, Engineering, Art, Humanities,
Medicine, and Business. Furthermore, the dataset has three
splits: Perception, Comprehension, and Adaptation, which
assess the performance of the models at different cognitive
stages. Each split contains 300 QA pairs, and a total of 900
QA pairs in the full benchmark. Perception questions as-
sess the ability to perceive information from videos, Com-
prehension questions assess the ability to understand knowl-
edge presented in videos, and Adaptation questions assess
the ability to adapt video knowledge to new scenarios.
MMVU [71] is a comprehensive expert-level, multi-
discipline benchmark which contains expert-annotated
questions spanning 27 subjects across four core disciplines:
Science, Healthcare, Humanities, Engineering, and Social

Sciences. We test on the val split of MM VU on a multiple-
choice QA format, which contains 625 QA pairs that require
expert-level reasoning on complex videos.

4.2. Implementation Details

For the test-time adaptation, we consider batches of 32
samples, thus video question-answer pairs. We train on
each batch with 32 samples independently for 5 epochs.
While training, to derive the answer, we sample four frames
from the frame distribution and do a step-by-step reason-
ing over 8 rollouts per subset. At test time, for dataset
splits - VidleoMMMU (Perception and Comprehension) and
MMVU - we sample the top 4 frames from the learned dis-
tribution and generate the final answer. For VideoMMMU
- Adaptation split, we use the top four sampled frames and
include the last frame as additional input, as this subset re-
quires the last frame to be used as the default.

For hyperparameters, we use cosine learning rate sched-
ule with a peak value of 5 x 10~7 and adopt the AdamW op-
timizer for the policy model. In total, we use 4 subsets, con-
sisting of 4 frames each and we sample 8 rollouts per subset
using a temperature of 1.0 and keep the same number of re-
sponses for label estimation and training. We set the max-
imum prompt length to 7524 and the maximum response
length to 1024 tokens. We set « in the final reward to 0.75.
We set the number of epochs to 5 for all the datasets. All
experiments were conducted on 4 x NVIDIA A100 40GB
GPUs. For the adaptive frame selection module, we set the
initialization of the weight to be 1. We set the frame selec-
tion learning rate 7 to 3 for all our experiments.

4.3. Comparison to State-of-the-Art

In Table 1, we present the comparison of existing works
and TTA-Vid on the two instructional video benchmarks.
Consider our method adapted to two baseline models,
InternVL3-2B and Qwen2.5-VL-3B, and compare against
three types of models: leading proprietary MLLMs [26, 50],
open-source general-purpose MLLMs [6, 29], and video
reasoning LLMs [43, 60]. The evaluation shows that the
proposed method leads to substantial increases across all
benchmarks and model backbones. Specifically, our ap-
proach achieves an accuracy of 55.44 on the perception
subset of the VidleoMMMU benchmark, compared to the
baseline of 43.89, which is +11.55 points without any su-
pervised finetuning. A similar boost is observed in all the
splits of the VidleoMMMU benchmark. On the MMVU
benchmark, our method obtains 56.41 with an increase of
5.69 over the base model. Our method achieves competi-
tive performance when compared with larger VLMs such as
InternVL-2-8B and LLaVA-OneVision-7B, which demon-
strates the effectiveness of the proposed method in pushing
the boundaries of smaller VLMs using smart strategies.



VideoMMMU

Model #params  #frames - - - MMVU (mc)
Perception Comprehension  Adaptation Avg

Random - - 12.00 14.00 16.00 14.00 20.00
GPT-40 - 50 66.00 62.00 55.67 61.22 75.40
Gemini 1.5 Flash - - 57.33 49.00 43.00 49.78 -
LLaVA-OneVision 72B - 59.67 42.33 43.00 48.33 -
Qwen-2.5-VL 72B - 69.33 61.00 50.33 60.22 -
InternVL-2 8B 32 47.33 33.33 31.67 37.44 -
LLaVA-OneVision 7B 64 40.00 31.00 30.67 33.89 49.20
Qwen-2.5-VL 7B 16 58.33 44.33 39.67 47.44 59.20
Video-RTS 7B 51.2 - - - 52.70 66.40
Video-R1 7B 64 - - - 52.40 64.20
InternVL-3 2B 4 43.89 32.11 30.00 35.33 50.72
InternVL-3+TTA-Vid 2B 4 55.44 (1 11.55) 35.66 (+ 3.55) 31.56 (+ 1.56) 40.89 (+ 5.56) 56.41 (1 5.69)
Qwen2.5-VL 3B 4 51.33 37.33 29.33 39.99 56.96
Qwen2.5-VL+TTA-Vid 3B 4 60.41 (1 9.08) 39.16 (+ 1.83) 3093 (+1.6) 43.50 (1+3.51) 58.51 (+ 1.55)

Table 1. Performance Comparison. We compare TTA-Vid with the state-of-the-art methods on two instructional video question-

answering tasks. The best results are highlighted in bold.

4.4. Ablation Studies

We first evaluate the contribution of both major component,
the test-time adaptation via batched rewards as well as the
frame sampling, in our proposed methodology. Table 2
shows the performance evolution as we ablate both compo-
nents, showing the baseline performance, as well as TTRL
with batched rewards, and the full method combining both
batched rewards with adaptive frame sampling. It shows
that each component yields distinct gains across different
benchmarks. Namely, TTRL alone provides consistent im-
provements of 2 to 6% notably boosting VideoMMMU
Comprehension (42.59) and MMVU (+44.20). Frame sam-
pling with self-supervised reward signals achieves even
larger gains, particularly on VideoMMMU Perception and
MMVU, indicating that these sets benefit most from iden-
tifying key frames. This consistent with the fact that
those sets feature questions requiring reasoning over critical
moments rather than comprehensive temporal understand-
ing. Only for VidleoMMMU Adaptation, TTRL alone de-
creases performance, while the combination maintains pos-
itive gains. The full method (highlighted row) achieves the
best overall performance, with particularly strong improve-
ments on VideoMMMU Perception and MMVU.

4.5. Generalized Test-time Analysis

In-dataset generalization: We further evaluate the gener-
alization ability of TTA-Vid by testing each adapted model
on the held-out test data, excluding the samples used during
adaptation. The results for the generalized evaluation are
shown in Table 3. Note that for the evaluation of the full

method, we rely on the frame distribution that was learned
for each video. While this means that the last line can be
seen as an upper bound, it also allows for a direct compar-
ison with Table 2 as the same frame distribution is used in
both cases. Overall, it shows that even on samples not seen
during adaptation, the adapted models consistently outper-
form the baseline across all benchmarks. This indicates
that incorporating an RL-based reward signal together with
our frame-sampling strategy during test-time adaptation im-
proves the model’s ability to generalize beyond the adapted
examples. This is consistent with recent observations by
the NLP community reported in works such as LIMR [32]
and 1-shot RLVR [59] where models trained on drastically
reduced train sets, even as small as single example main-
tains strong generalization capabilities. We hypothesize that
determining whether similar effects emerge in multimodal
contexts is an interesting direction for the future.

Cross-dataset generalization: To further investigate this
generalization behavior across different datasets, we trained
a model on a VideoMMMU-Perception 32-video subset,
then tested it on the MMVU dataset. Compared to the
non-adapted baseline (41.05% accuracy), adaptation on
this small subset raises performance to 53.92% with ran-
dom frame sampling, and further to 55.68% when using
the learned frame-importance distribution from the adapted
model. We do a similar analysis on VideoMMMU Percep-
tion data, where we test perception split on a model train on
MMVU with 32 samples. We obtain accuracy of 47.67 with
random frame sampling and 53.67 with frame distribution
which improves baseline by +3.78 and +9.78 respectively.



VideoMMMU

Batched Frame
TTRL . MMVU (mc
Rewards  Sampling Perception Comprehension  Adaptation Avg (enc)
X X X 43.89 32.11 30.00 35.33 50.72
v v X 46.77 (1 2.88) 36.04 (1 3.93) 26.56 (] 3.44) 36.45 (+1.12)  55.21 (1 4.49)
v v v 55.44 ¢+ 11.55) 35.66 (1 3.55) 31.56 (+ 1.56) 40.89 (+5.56) 56.41 (1 5.69)

Table 2. Component ablation on InternVL3-2B. Models are trained on 32-video subsets of each dataset for 5 epochs and evaluated
on their respective test sets, with results averaged across all subsets. Models without TTRL are run one on the full test set. Arrows
indicate performance changes relative to the baseline. Combining all components (highlighted) achieves the best overall performance
across benchmarks.

Batched Frame VideoMMMU
TTRL - MMVU (mc
Rewards  Sampling  perception  Comprehension  Adaptation Avg (eme)
X X X 43.89 32.11 30.00 35.33 50.72
v ve X 49.17 (1 5.28) 36.25 (1 4.14) 26.96 (| 3.04) 37.46 (1+2.13) 54.96 (+ 4.24)
v v v 56.04 (1 12.15) 35.66 (1 3.55) 32.07 ¢+ 2.0mn 41.26 (1+5.93) 56.99 (1 4.27)

Table 3. Generalization analysis. We train TTA-Vid on subsets of 32 samples and evaluate on the full test set excluding the training
samples. Models trained on small subsets still outperform the baseline on unseen data, demonstrating that test-time adaptation with RL-
based rewards and frame sampling enhances generalization capability.

4.6. Frame selection via frame optimization

We finally evaluate the proposed frame optimization pro-
cess. Our approach selects the top-k frames according to
the final optimization distribution and compares against ran-
dom frame selection baselines. For this evaluation, we use
the models adapted on 4 frames during TTA and evaluate
then for multiple frame budgets to generate the final answer:
k€ {1,2,3,4,8,16,40}, where k = 40 represents the full
video. As shown in Figure 3, our optimization significantly
improves the final performance of the model, especially in
the low-frame regime. Specifically, optimized frame selec-
tion achieves 3.68% improvement when selecting k = 4
frames compared to random selection. Notably, selecting
4 optimized frames outperforms selecting 4 random frames
(55.36% vs 51.68%), demonstrating the effectiveness of our
approach. Note that while this improvement is higher for
lower frame regimes, our results further shown that frame
selection based on the self-supervised reward still performs
better than just using the full range of frames, enabling effi-
cient video understanding with minimal frame budgets.

4.7. Qualitative Analysis

To illustrate the effectiveness of our learned frame selection,
we compare the combination of the test-time adaptation
and frames selection by our optimization-based approach
against random sampling. Figure 4 presents two represen-
tative examples from VideoMMMU-Perception. In the first
example, the question asks “What is the break-even price as
shown in the final example of the video?” requiring both
temporal localization (identifying the “final example”) and
some numerical understanding across multiple price values.

MMVU
60 -
. 581
g\‘i -
> 56 1
O
o
3 54 - 3.68%
O
< 52 —8— Optimized (Learned)
—— Random
50 t=———— - -
1234 8 16 40

Top-k Frames

Figure 3. Comparison of optimized frame selection versus random
frame selection across different numbers of frames on MMVU
dataset. Our method shows substantial improvements in the low-
frame regime, with 4 optimized frames outperforming 16 random
frames on both datasets.

Our adapted model retrieves the relevant frame showing
the break-even calculation of $6.25 (option C), whereas the
baseline model based on random frame sampling leads to an
incorrect prediction of $6.00 (option B). In the second ex-
ample, the question requires identifying the specific textual
content visible on the video: “What is J(0.5) as shown in
the video (highlighted in blue)?”. The adapted model suc-
cessfully selects the frames that lead to the correct answer,
i.e. first identifying the frames in which J(0.5) is high-
lighted in blue color (as specified in the question), followed
by continuous selection of important frames, to finally se-
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Figure 4. Qualitative comparison of frame selection strategies. Random sampling (left) versus our learned selection (right) on two
VideoMMMU (Perception) examples. (1): Design question requiring identification of break-even price in the video. Our method selects
the critical frame (correct answer C), while random sampling misses it (predicts D). (2): Accounting question requiring localization of the
value. Our method identifies the highlighted value in blue to be (0.58, option G), while random sampling fails (predicts 2.5, option E).

lect the frame that has the answer in it, which is option G
same as the ground truth. In contrast, the random sampling
misses these key frames, leading to an incorrect baseline
prediction (J). These examples demonstrate that the pro-
posed adaptive frame selection coupled with the test-time
adaptation with reinforcement learning, learns to prioritize
frames containing task-relevant information.

5. Conclusion

In this work, we introduced TTA-Vid, the first test-time
reinforcement learning framework for long instructional
videos, where rewards are extracted on-the-fly from unla-

beled test data. Our approach addresses the challenge of
adapting vision-language models to notoriously difficult
instructional video content at inference time by leveraging
consistency-based self-reinforcement signals: we compute
a frequency-based reward from agreement among gener-
ated answers across diverse frame subsets, and optimize
a multi-armed bandit formulation using these test-time
reinforcement learning signals to learn interpretable
frame importance distributions.  Extensive evaluation
across VidleoMMMU and MMVU demonstrates consistent
improvements over strong baseline models, with gains
up to 15.63% on MMVU using only 4 frames. Beyond
empirical gains, TTA-Vid enhances video understanding



abilities without explicit supervision, pointing to test-time
optimization through reinforcement learning as a pow-
erful paradigm for bridging pre-trained vision-language
models and downstream instructional video understanding.
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Supplementary Material

6. Overview

We provide additional ablation studies, and experimental
settings in this Supplementary Material. In all experiments,
we follow the generalization principle established in the
main paper (Section 4.5) by training only on two 32-sample
subsets from each dataset. This setup is applied across all
ablations and evaluation settings in the experiments pre-
sented in supplementary material. Evaluation is conducted
on the full test set, and the final results are computed as the
average across evaluations from both the trained models.

Note. In Table 1 (Performance Comparison) of the main
paper, the MMVU baseline score and the reported differ-
ence between the baseline and the proposed method contain
a typo. The MMVU baseline score was reported as 41.05;
the correct value is 50.72 and the difference between the
baseline and proposed method is 5.69.

7. Further Ablation Studies

To assess the effectiveness and scalability of the proposed
method, we conduct a series of ablation studies. Specifi-
cally, we examine the impact of applying TTA-Vid to larger
models, the effect of varying the number of training epochs,
the influence of different configurations of subsets (K), and
rollouts (N), and the performance sensitivity to different re-
ward functions combinations. Together, these ablations pro-
vide a comprehensive understanding of the factors that con-
tribute to the method’s overall performance.

Model VideoMMMU-Perception MMVU
LLaVA-OneVision-7B 40.00 49.20
Qwen2.5-VL-7B 58.33 59.20
InternVL-2-8B 47.33 -
InternVL3-8B 63.00 62.08
InternVL3-8B + TTA-Vid 67.66 63.60

Table 4. Performance analysis with InternVL3-8B as the base
model. We compare the performance of models with compa-
rable parameter size with the proposed method: TTA-Vid with
InternVL3-8B as the base model. It can be seen that, for both
the datasets, the proposed method achieves the best results.

7.1. Impact of TTA-Vid on Bigger Models

To further evaluate the effectiveness of the proposed
method, we extend the analysis beyond small-scale model
and perform test-time adaptation on InternVL3-8B. We
train the model using the same subset configuration of K =
4 and N = 8 for five epochs, and keep all other hyper-
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45.0 A - MMVU
0 1 2 3 4 5
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Figure 5. Epoch ablation. We examine the accuracy of the
model per epoch. Values at epoch 0 represent the original base-
line (InternVL3-2b) performance.

parameters identical to those used for training InternVL3-
2B variant. As shown in Table 4, applying TTA-Vid to
InternVL3-8B yields the strongest results among all mod-
els of comparable size. This demonstrates that the proposed
method scales effectively to larger models.

7.2. Impact of Number of Training Epochs

We ablate the impact of the number of training epochs
by training InternVL3-2B on VideoMMMU-Perception and
MMVU for 5 epochs. We save the model every epoch, and
further test it. From Figure 5, we observe that the base
model starts with relatively low accuracy, but as training
with TTA-Vid progresses, the accuracy steadily improves
across both datasets.

7.3. Impact of Subsets (K) and Rollouts (N)

To understand the effect of different number of subsets
(K) and rollouts per subset (N), we ablate over different
values of K and N. We experiment this on two datasets:
VideoMMMU-Perception split and MMVU. We keep all
remaining hyperparameters the same as for the original set-
ting. From Table 5, it can be seen that our method gen-
eralizes to different values of K and N. For MMVU, the
default configuration of 4 subsets and 8 rollouts yields the
best performance, while for VidleoMMMU-Perception the
same default setup achieves the second-best results. Al-
though increasing the number of subsets or rollouts can im-
prove performance in some cases, it also increases compu-
tational cost. Therefore, these hyperparameters can be ad-
justed based on the task difficulty and the available compu-
tational budget.



7.4. Impact of Different Reward Functions

We explore several alternative configurations for the reward
functions which include: (a) R,,,; is the majority reward
based on TTRL [73] i.e. the rollouts receive a reward of 1 if
it matches the majority answer and 0 otherwise, (b) Ry,.cq
is based on the counts and the empirical frequency for each
unique answer, defined as:

i h(yx.n) = a] Ripreq = A
1n=1 ! Za’EA c(a’)

)
and, (¢) Ryyeq + algiy, where o is weighting factor and
R 45, 1s used to control diversity, which is defined as:

—Y " pla)logp(a
acA
H{(p)
v — 0,1
From Table 6, it can be observed that the reward configu-
ration used in TTA-Vid outperforms other alternative design
choices.

Mw

£
Il

(10)

Rewards VideoMMMU-Perception
R 55.16
Rireq 55.33
Rfrreq + aRgiy (Oz = 1) 55.50
Rfreq + aRgiy (a0 = 0.75) 56.04

Table 6. Impact of different rewards. In this table, we ana-
lyze the impact of different reward functions. We conduct ab-
lations using: (a) the R,.q; reward from [73], which assigns a
binary value of O or 1 based on majority voting, and (b) Rfyeq
and (¢) Rfreq + ®Raiv, in which the relative contributions of the
frequency and entropy components are controlled by a weighting
factor ().

8. Comparison to Self-Consistency Baseline

Building on the success of self-consistency as a stronger
alternative to greedy chain-of-thought decoding, we adopt
it as a natural test-time baseline for our setting. Follow-
ing [56], we evaluate InternVL3-2B with self-consistency
by sampling 32 reasoning rollouts per input and returning
the most common answer. It is important to note that the
computational cost of self-consistency grows linearly with
the size of the test set, for example, it requires 9600 forward
passes for the 300 sample set in VideoMMMU Perception
and 20, 000 forward passes for the 625 sample test set for
MMVU. In contrast, our method requires a one-time train-
ing overhead on only 32 samples, after which inference re-
quires essentially one forward pass per test example (e.g.,

300 and 625 passes for the two datasets). Despite this large
reduction in test-time cost, our method achieves higher ac-
curacy on both datasets. Specifically, self-consistency ob-
tains 50.00% vs. ours 56.04 on VidleoMMMU-Perception,
and 55.04% vs our 56.99 on MMVU.

9. TTA-Vid Prompt Details

In this section, we provide prompt used in our experiments.
As shown in Figure 8, and following TTRL [73], the model
is instructed to generate step-by-step reasoning followed by
an answer in a specified format. The number of choices
varies for each dataset.

10. Category-based Performance Analysis

We analyze the performance of the baseline model
(InternVL3-2b) vs our model (InternVL3-2b+TTA-Vid).
From figures, 6 and 7, it can be seen that for both datasets,
the proposed method outperforms baseline model in all the
categories. Specifically, in Figure 6, we show the scores for
VideoMMMU Perception. The highest gains are observed
in Humanities category, followed by Medicine, and the least
gains are observed in Science category. In Figure 7, we
show the scores for MMVU dataset. The highest gains are
observed in Healthcare category.

11. Frame Distribution Progression Examples

This section provides a visualization of the frame distribu-
tions (p from Equation 5) across different epochs during
the optimization process. The heatmaps as shown in Fig-
ure 9 illustrate how the model’s perception of frame im-
portance evolves over time for one representative video in
each dataset. “init” represents the initial state of the model
with uniform distribution. As the optimization progresses
through epochs 0 to 4, the heatmaps reveal that the model
begins to focus on specific frames, indicating their higher
importance for the video. This behavior suggests that the
model is learning to prioritize certain frames that are more
relevant for its task, effectively filtering out less significant
frames. The plots highlight the model’s ability to adapt and
refine its frame selection strategy over time.



Subsets (K) Rollouts (N) VideoMMMU-Perception (Acc. in %) MMVU (Acc. in %)

4 8 56.04 56.99
4 16 55.83 54.72
4 32 55.83 54.64
8 8 56.33 54.32
8 16 54.50 54.96
8 32 54.66 55.28

Table 5. Component ablation in TTA-Vid. In this table, we analyze the performance of the proposed method with different subsets (K)
and rollouts (N) with InternVL3-2B as the base model. For MMVU, our default configuration of K = 4 and N = 8 yields the best
performance and is the second-best setting for the VideoMMMU-Perception set. Since computational cost increases with larger values of
K and N, these hyperparameters can be adjusted according to the available computational resources.

VideoMMMU - Perception Category Accuracy

801 mmm InternvL3-2b 77.12

H InternVL3-2b + TTA-Vid

62.08

Accuracy (%)

Art Business Science Medicine Humanities Engineering

Figure 6. Performance per category: VideoMMMU-Perception VidleoMMMU dataset has multiple categories such as Art, Business,
Science, Medicine, Humanities and Engineering. It can be seen that TTA-Vid performs better than the baseline on all the different
categories.

MMVU Category Accuracy

65| M InternVL3-2b 65.42

Il nternVL3-2b + TTA-Vid 61.95 61.71

Accuracy (%)

Science Healthcare Humanities & Social Science Engineering

Figure 7. Performance per category: MMVU. MMVU dataset has four categories: Science, Healthcare, Humanities and Social Science
and Engineering. TTA-Vid outperforms the baseline on all the categories.
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Answer the following multiple choice question based on the video.

First, briefly summarize the content shown in each frame. Think step by step
before answering.

Finally, the last line of your response should be of the following format:
Answer: $LETTER’ (without quotes) where LETTER is one of ABCDEFGHIJ.

Question: <QUESTION_PLACEHOLDER>

Choices: <CHOICES_PLACEHOLDER>"
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Figure 8. We provide the prompt used for training TTA-Vid
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Figure 9. Heatmap examples of frame distributions across epochs: Visualizing the evolution of frame distributions before and after
frame optimization of a sample from each dataset. “Init” represents the initial state with uniform distribution, while epoch 0-4 show post
optimization results.
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